Exercise 6

Explain carefully the statement after Eq. A.2-21 that the i th component of $[\mathbf{v} \times \mathbf{w}]$ is $\sum_{j} \sum_{k} \varepsilon_{i j k} v_{j} w_{k}$.

Solution

If we have two vectors, $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$, then the cross product is

$$
\mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}
\boldsymbol{\delta}_{1} & \boldsymbol{\delta}_{2} & \boldsymbol{\delta}_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|
$$

The i th component is

$$
\begin{array}{ll}
v_{2} w_{3}-v_{3} w_{2} & \text { when } i=1 \\
v_{3} w_{1}-v_{1} w_{3} & \text { when } i=2 \\
v_{1} w_{2}-v_{2} w_{1} & \text { when } i=3
\end{array}
$$

Since the permutation symbol $\varepsilon_{i j k}$ is defined as

$$
\varepsilon_{i j k}= \begin{cases}1 & \text { if } i j k=123,231, \text { or } 312 \\ -1 & \text { if } i j k=321,132, \text { or } 213 \\ 0 & \text { if any indices are the same }\end{cases}
$$

the i th component can be written as

$$
\sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{i j k} v_{j} w_{k}
$$

We will prove this now. Expanding the double sum, we have

$$
\begin{aligned}
\sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{i j k} v_{j} w_{k}=\sum_{j=1}^{3}\left(\varepsilon_{i j 1} v_{j} w_{1}+\varepsilon_{i j 2} v_{j} w_{2}+\varepsilon_{i j 3} v_{j} w_{3}\right)= & \sum_{j=1}^{3} \varepsilon_{i j 1} v_{j} w_{1}+\sum_{j=1}^{3} \varepsilon_{i j 2} v_{j} w_{2}+\sum_{j=1}^{3} \varepsilon_{i j 3} v_{j} w_{3} \\
= & \underbrace{\varepsilon_{i 11} v_{1} w_{1}}_{=0}+\varepsilon_{i 21} v_{2} w_{1}+\varepsilon_{i 31} v_{3} w_{1} \\
& +\varepsilon_{i 12} v_{1} w_{2}+\underbrace{\varepsilon_{i 22} v_{2} w_{2}}_{=0}+\varepsilon_{i 32} v_{3} w_{2} \\
& +\varepsilon_{i 13} v_{1} w_{3}+\varepsilon_{i 23} v_{2} w_{3}+\underbrace{\varepsilon_{i 33} v_{3} w_{3}}_{=0} .
\end{aligned}
$$

When $i=1$, we have

$$
\begin{aligned}
\sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{1 j k} v_{j} w_{k} & =\underbrace{\varepsilon_{121} v_{2} w_{1}}_{=0}+\underbrace{\varepsilon_{131} v_{3} w_{1}}_{=0}+\underbrace{\varepsilon_{112} v_{1} w_{2}}_{=0}+\varepsilon_{132} v_{3} w_{2}+\underbrace{\varepsilon_{113} v_{1} w_{3}}_{=0}+\varepsilon_{123} v_{2} w_{3} \\
& =v_{2} w_{3}-v_{3} w_{2} .
\end{aligned}
$$

When $i=2$, we have

$$
\begin{aligned}
\sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{2 j k} v_{j} w_{k} & =\underbrace{\varepsilon_{221} v_{2} w_{1}}_{=0}+\varepsilon_{231} v_{3} w_{1}+\underbrace{\varepsilon_{212} v_{1} w_{2}}_{=0}+\underbrace{\varepsilon_{232} v_{3} w_{2}}_{=0}+\varepsilon_{213} v_{1} w_{3}+\underbrace{\varepsilon_{223} v_{2} w_{3}}_{=0} \\
& =v_{3} w_{1}-v_{1} w_{3} .
\end{aligned}
$$

When $i=3$, we have

$$
\begin{aligned}
\sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{3 j k} v_{j} w_{k} & =\varepsilon_{321} v_{2} w_{1}+\underbrace{\varepsilon_{331} v_{3} w_{1}}_{=0}+\varepsilon_{312} v_{1} w_{2}+\underbrace{\varepsilon_{332} v_{3} w_{2}}_{=0}+\underbrace{\varepsilon_{313} v_{1} w_{3}}_{=0}+\underbrace{\varepsilon_{323} v_{2} w_{3}}_{=0} \\
& =v_{1} w_{2}-v_{2} w_{1} .
\end{aligned}
$$

Therefore, the i th component of $\mathbf{v} \times \mathbf{w}$ can be written as

$$
\sum_{j=1}^{3} \sum_{k=1}^{3} \varepsilon_{i j k} v_{j} w_{k}
$$

